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Recently, Fenical and associates at the Scripps Institute of Scheme 1. Global Strategy toward Salinosporamide A
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differentiated malonate moiety is created with complete stereo-
chemical definition. In time, the substituent a$ i§ presented as
an exomethylene group (cf4 — 5). An acetaldehyde residue,
derivable at G, is used to differentiate the faces of thexo
methylene group (cf5 — 6), thereby ensuring the properly
configuredf-lactone moiety. Adaptation of the Corey concept in
the context of addition of the allylic zinc reagesitto constrained
aldehyder provides remarkable stereoselection at bojta@ G.

We now describe the orchestration of these general concepts en
route to salinosporamide A. The bicyclic enamigfewas treated
ith divinyl cuprate under mediation by TMSE€Hhffording9 as a
single product (Scheme 2). In a subsequent step, alkylati® of
as shown, furnished the lactali in 77% yield as a 14:1 mixture
of diastereomer§We next turned to the conversion of the vinyl
group to a carbonate ester acylating agent. Ozonolysis followed
by reductive treatment with sodium borohydride afford&d The
derived ethyl carbonate was subjected to cleavage df{Beacetal

Figure 1. Structures of Salinosporamide A)(and Omuralide Z).

amide A displays remarkable in vitro cytotoxicity @&of ap-
proximately 10 nM), and its activity appears to be directed to the
inhibition of the 20S proteasome. Thus, salinosporamide A is
approximately 35 times more potent than is omural@le hich

is directed to the same molecular target. Our fascination with
this target was first provoked by still another natural product,
TMC-95A, which we synthesized in a manner that allowed us to
conduct some telling SAR experimert$hus, when salinospora-
mide A came along, it seemed to us an appropriate target to broade
the involvement of our laboratory in the exciting field of naturally
occurring 20S proteasome inhibitors.

At this writing, there is a single reported total synthesis of
salinosporamide A (i.e., that of E. J. Corey and associatés).
remarkably enabling feature of that synthesis was the solution it
offered to what might otherwise have been a most difficult problem,
that is, that of providing stereochemical control at carbons 6 and

. . R
5. The coordinated Corey solution to both of these stereogenic Scheme 2. Synthesis of Intermediate 15
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centers involves the action of a cyclohexenyl zinc agent with an 0 —0
appropriately presented aldehyde function corresponding; tof C OW _a_ OW b o
salinosporamide. = [ NOB

Indeed, the route described herein exploits use of the cyclohex- J R
enyl zinc methodology to solve the stereochemical issues at both 3 9 BnO
Cs and G. However, we first focused on solving the internal
stereochemical issues associated with the building of the cis-fusedo N EtO~N\—COst-Bu
pyrrolidonep-lactone ensemble. - /* '

In Scheme 1, the overall stereochemical gestalt of our program “TOCOE
is described. The strong facial bias of the pyroglutamate derivative, sno 3 gd EnG HG
3, served to direct attack agQoriginally conducted by 1,4-addition aKey: (a) vinylmagnesium bromide, TMSCI, Cul, THF78°C (75%):
of a vinyl cuprate nucleophile) from itg-face. Correspondingly, (b) 10° LDA, THF, room temperature (rt) (77%r = 14:1); (c) Q,
alkylation at G proceeds with high selectivity from i-face. The CHxCl,—MeOH (3:1), —78 °C then NaBH, 0 °C (86%); (d) CICGE,
a-substituent, introduced atCn time is presented as a carbonate gé’g?c')?]’: r&(?;"&;\%ﬂ%"é&“':tg'lﬁ(grgglgéfﬁh@(?;% |(r? ﬁﬁé‘ii’eresaﬁ’?ﬂ;’
ester. To enable the strategic C-a_cylatlon, a nove_l |m|Qate ensembleEthBE;,’ K;C%s, CH,Clo, 1t (8852;); 0 LHiVIDS, THF,—20°C (82‘;3); ij)
(see formal structure@) was devised to direct lithiation to ,C 1 M HCl aq, THF, 0°C (90%); (k) PMBCI, NaH, DMF, rt (61%); (1)
Following intramolecular acylation by the carbonate ester, as Pd(OHy—C, H,, EtOH, rt (quant).
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protecting arrangement to affort3. The hydroxymethyl lactam
was converted to the imidate estéras shown by a sequence
consisting of Jones’ oxidation, esterification, and treatment with
Meerwein reagent (EDBF,). With the lactam functionality thus
masked, treatment of with LHMDS led to exclusive anion
formation at G. Internal acylation with the pendant ethyl carbonate
proceeded smoothly to afford lactoid.* Acidic treatment ofL4

Upon conversion of the benzyl ester to an aldehyde, intermediate
7 was in hand.

Treatment of7 with the cyclohexenyl zinc reager&, under the
Corey protocdl proceeded with excellent diastereocontrol to afford
19in 88% yield @r = 20:1 at G). By sharp contrast, the use of
the corresponding imidate aldehyde derived frb# instead of7
resulted in poor diastereoselectivity (78% yield, 4:3, configuration

led to the restoration of the lactam moiety, which was subsequently not determined). Obviously, the PMB group plays a critical role in

protected with PMBCI. Removal of the benzyl protecting group
afforded15.

The lactone ofl5 was subjected to nucleophilic ring opening
with phenylselenium aniohand the resultant carboxylic acid was
benzylated to afford the differentially esterifidd (Scheme 3).

Scheme 3. Synthesis of Salinosporamide A2
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aKey: (a) PhSeSePh, NaBHEtOH, 60°C; (b) BnBr, KxCOs, DMF, rt
(65% in 2 steps); (c) 30% #D; aq, THF, rt; (d) toluene, 100C (94% in
two steps, 7297 + 22% 5); (e) Dess-Martin periodinane, CkCly, rt
(92%, 89% in three steps frot6); (f) PhSeBr, AgBR, BnOH, CHCl,,
—20 to 0°C (74% as an anomeric mixture, 12:1); (g) AIBRBusSnH,
toluene, 100C (98%); (h) NaBH, THF—EtOH (3:1), rt (85%); (i) Dess
Martin periodinane, CbCly, rt (95%); (j)8, THF, —78°C (88% for19, dr
= 20:1); (k) ceric ammonium nitrate (CAN), GBN—H;0, 0 °C (90%);
() Na, lig NHs, —78 °C; (m) NaBH, THF—H,0 (2:1), rt (97% in two
steps); (n) BGJ, CH.Cly, 0 °C; (0) BOPCI, TEA, CHCIy, rt; (p) PPCh,
pyridine, CHCN, rt (51% in three steps).

Surprisingly, the subsequent selenide oxidation elimination sequenc
gave rise to a mixture of the expected alcohal (72%), along
with aldehydeb (22%), which was in fact a one-step advancement
in our planned synthetic route. Upon purification, we converted
the bulk unoxidized material,7, to aldehydes through exposure
to Dess-Martin periodinané.

With intermediate5 in hand, the stage was now set for a key
acetal-mediated cationic cyclizatibhWe note that electrophilically
induced cyclization at the aldehyde (or hemiacetal) oxidation level

was central to the success of the project. Presumably, a tetrahy-

drofuran derived from haloetherification could not have been readily
opened to expose the required functionalities at &bd G.
Conversely, selenolactonization using an acetic acid residug at C
would have produced a lactone that would not be readily dif-
ferentiable from the bis-acyl functionality already present at C
Thus, recourse to the benzyl glycoside modality for storing and
unveiling the G—Cs; functionality was a unique solution to a
difficult problem. Upon treatment with phenylselenenyl bromide
and AgBFR in the presence of benzyl alcohol, an intermediate

diastereoselection in the novel Corey reacfion.

Removal of the PMB group fronl9, followed by reductive
opening of the benzyl glycoside, gave rise to trRf. Acidic
cleavage of théert-butyl ester was effected through treatment with
BCl;, and the crude trihydroxy acid was then subjected to
lactonization-chlorinatior? to provide 1, whose spectroscopic
properties were in complete accord with the natural matétfial.
addition, the structure of fully synthetid was corroborated
crystallographically.

In summary, an efficient and highly stereocontrolled enantiose-
lective synthesis of salinosporamide A has been achieved. Several
key features of our synthesis include the temporary masking of a
lactam functionality to accomplish selective anion formation at C
(seed), the use of a nucleophilic selenium species to open a lactone
in a regiocontrolled fashion (sek5), and the use of an unusual
cationic hemiacetal selenocyclization to install the quaternary center
at G; in manageable form with complete stereocontrol.
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